каталог оружия России и его характеристики
Холодное оружие
Полезные советы и лайфхаки

Окончание обзора отечественных бронированных машин 1945-1965 годов

Окончание обзора отечественных бронированных машин 1945-1965 годов.

До конца 1953 г. на ЧКЗ по результатам стендовых и ходовых испытаний частично отработали документацию для изготовления шести комплектов УС ППО. За это время в СКБ-2 также выполнили электросхему приставки для автоматического включения вентилятора после окончания пожара, которая была рассмотрена в НТК ГБТУ и в 1 Главном управлении Министерства транспортного машиностроения и получила одобрение.

В течение 1954 г. на ЧКЗ собрали и отправили на полигонные испытания шесть комплектов УС ППО262, обеспечивавших автоматическое тушение пожара в боевом отделении и МТО тяжелых и средних танков. В IV квартале 1954 г. опытные образцы системы смонтировали на ЛКЗ в двух танках Т-10, которые прошли заводские испытания. Затем одну из этих машин (№5310А321) отправили на НИИБТ полигон для проведения дальнейших испытаний.

К слову, во время проведения всевозможных мероприятий на открытой площадке, связанных с большим числом зрителей (будь-то парад, выступление и т.д.) — для обеспечения комфорта и безопасности используется трибуна с навесом. В зависимости от конкретной задачи и мероприятия — подбираются те или иные конфигурации трибуны, с которыми вы можете ознакомиться перейдя по ссылке.

В ходе полигонных испытаний предстояло оценить эффективность и надежность УС ППО при тушении пожара в танке и возможность унификации баллонов ППО, устанавливавшихся в танках. Предполагалось определить концентрацию углекислоты, необходимую для тушения пожара в боевом отделении, эффективность удаления углекислоты и продуктов горения вентиляторами боевого отделения после тушения пожара, необходимое количество ТЭЗ и распылителей, способность мембран головок держать углекислоту в баллонах в количестве 3,2-3,4 кг при температуре +60°С, степень безопасности для экипажа при воздействии углекислоты от срабатывания баллонов. По завершении испытаний предстояло дать заключение о целесообразности установки УС ППО в танках и САУ и ее принятия в серийное производство.

Полигонные испытания УС ППО в танке Т-10263 прошли в период с марта по сентябрь 1955 г. В соответствии с указаниями председателя НТК ГБТУ и начальника ГБТУ дополнительно провели испытания приставки вентиляторов УС ППО264 конструкции ЧКЗ.

Танк Т-10 прошел ходовые испытания в пределах гарантийного пробега в объеме 2010 км. Испытания проводились при установке переключателя автомата УС ППО в положение «автоматическая работа». При этом проверялось влияние тряски и окружающих температур на возможность самопроизвольного срабатывания ТЭЗ, а также надежность отдельных узлов УС ППО. При проверке автомата системы на 300 включений было выявлено заедание кнопок ручного включения. Ненадежную работу продемонстрировали и ТЭЗ вследствие систематического отворачивания болтов их крепления и загрязнения внутренней полости ТЭЗ (к концу ходовых испытаний отказали два ТЭЗ). Баллоны ППО действовали надежно.

Трубопроводы системы с обратными клапанами поломок не имели, но из-за отсутствия надежного крепления трубопроводов и обратных клапанов в отделении управления танка от вибраций произошло разрушение трубопроводов в местах подсоединения к баллонам ППО.

К моменту завершения испытаний отказал в работе механизм остановки двигателя (МОД) из-за повышенного износа деталей, в результате не происходило разъединения тяги привода топливного насоса.

Тем не менее, испытания показали, что использование УС ППО существенно повысило возможности противопожарной защиты Т-10 по сравнению с существовавшими серийными системами. К преимуществам УС ППО отнесли:

— автоматическое включение при возникновении пожара как в обитаемых отделениях, так и в МТО;
— введение МОД (вместо подачи углекислоты в цилиндры), обеспечивавшего более надежное автоматическое глушение двигателя через 3,5-4 с после срабатывания системы;
— автоматическую задержку подачи углекислоты до момента глушения двигателя;
— автоматический ввод очередного баллона при неисправности предыдущего баллона;
— устранение возможности истечения углекислоты через разряженный баллон;
— автоматическое отключение вентиляторов при срабатывании системы и включение их после ликвидации пожара. Однако возможности УС ППО (как и серийной системы ППО) резко снижались из-за неудовлетворительной чувствительности ТЭЗ с биметаллическими мембранами при воздействии на них пламени.

Окончание обзора отечественных бронированных машин 1945-1965 годов

В 50% всех опытов время замыкания ТЭЗ составляло — более 60 с, что превышало нормы. Наряду с этим ТЭЗ обладали низкой чувствительностью к размыканию контактов, что иногда приводило к ложному срабатыванию и вводу в действие очередного баллона после тушения пожара.

Неудовлетворительная чувствительность ТЭЗ к воздействию пламени обусловила увеличение длительности и интенсивности пожара в танках, что, в свою очередь, затрудняло их тушение, создавало опасность возникновения вторичных очагов возгорания, приводило к сгоранию легковос-пламеняемых материалов в танках или к взрыву боеприпасов (если продолжительность пожара превышала 80 с), увеличивало поражающее действие пламени и продуктов горения на экипаж, а также вызывало отказы отдельных агрегатов и узлов (особенно радио — и электрооборудования), в том числе и системы ППО. Низкая эффективность УС ППО, кроме того, усугублялась недостаточно обоснованным размещением ТЭЗ и распылителей в танке.

В связи с этим 26 сентября 1955 г. специалисты НИИБТ полигона заменили ТЭЗ в танке Т-10 термоэлектродатчиками (ТЭД)265 с релейной коробкой вентиляторов (РКВ). Последующие испытания УС ППО с ТЭД в Т-10 прошли по специальной программе, в ходе которых произвели оценку эффективности системы и надежности ее работы с новыми датчиками, определили минимально необходимое количество углекислоты для тушения пожара, а также концентрацию СО и С02 в боевом отделении при тушении пожаров и эффективность их удаления вентиляторами.

ТЭД (по четыре в каждом отделении) располагались в тех же местах, которые были предусмотрены для ТЭЗ, за исключением мест для средних ТЭЗ в МТО, где ТЭД не устанавливались. РКВ разместили у моторной перегородки боевого отделения на вертикальном броневом листе корпуса. Кроме того, в УС ППО ввели систему автоматического выключения и включения вентиляторов.

Во время последних испытаний произвели 14 опытов по тушению пожаров. С целью определения минимального количества углекислоты в баллонах ППО, необходимого для надежного тушения пожаров, опыты проходили с различным зарядом углекислоты в баллоне. Одним баллоном ППО было потушено девять пожаров, четыре пожара — аварийным баллоном и один пожар — двумя баллонами.

Неспособность заряда одного баллона потушить пожар особенно отмечалась при проведении опытов с открытыми люками танка. Низкая эффективность тушения пожаров в обитаемых отделениях объяснялась малым количеством распылителей углекислоты, не обеспечивавших ее быструю подачу ко всем пожароопасным местам в танке во время пожара (ТЭД были смонтированы без учета пожароопасных мест в танке). После 12-го опыта ТЭД в обитаемых отделениях установили на новые места.

Измененное расположение датчиков значительно улучшило их охват пламенем и горячим потоком воздуха во время пожаров в танке. Одновременно удалось определить оптимальное расположение датчиков и распылителей в этих отделениях для эффективного тушения пожара, которое впоследствии и приняли для данной системы.

В целом УС ППО с ТЭД в танке Т-10 действовала надежно. Отдельные неисправности не были связаны с надежностью ТЭД и поляризованных реле, а являлись следствием их неправильного расположения и недостаточного количества распылителей. В свою очередь, новое размещение ТЭД обеспечивало быстрое (до 2 с) замыкание контактов поляризованного реле и, соответственно, сокращало время срабатывания системы.

При тушении пожаров в танке Т-10 с разрядкой одного баллона в боевом отделении опасной зоной являлась зона дыхания механика-водителя, где концентрация углекислоты достигала 18,8%, удерживаясь при этом выше 10% в течение 70-90 с от начала истечения углекислоты, а возникала к исходу первых 10-20 с. В зонах дыхания других членов экипажа отмечались единичные «подскоки» содержания углекислоты, которые держались непродолжительное время. При неработающих средствах вентиляции Т-10 концентрация углекислоты в зонах дыхания членов экипажа достигала высоких значений и удерживалась продолжительное время. Очистка боевого отделения с помощью вентилятора давала ощутимый эффект: рост концентрации С02 прекращался и начиналось быстрое падение уровня ее концентрации во всех зонах дыхания членов экипажа. Кроме CO2 во время испытания в зонах дыхания членов экипажа обнаружилось содержание окиси углерода (угарного газа). При этом колебания ее содержания в различных зонах составляло от 0,2 до 0,92 мг/л. Среднее содержание СО в ходе опытов составляло 0,39 м/л.

При тушении пожара углекислотой было установлено, что процентное содержание кислорода в воздухе падало в некоторых случаях до 14,3% (против 21% в норме). Особенно важно, что наибольшее падение содержания кислорода приходилось именно на то время, когда процентное содержание углекислоты в воздухе было максимальным, т.е. создавались наихудшие условия для экипажа. Повышенное и быстро нараставшее содержание углекислоты, повышенное содержание угарного газа, пониженное содержание кислорода во вдыхаемом воздухе при тушении пожара создавали условия для быстрого развития патологического и токсического воздействия на организм человека.

Проверка воздействия указанных факторов на экипаж танка проходила с использованием лабораторных животных — собак и кроликов. В условиях реального пожара на месте механика-водителя разместили собаку, а в боевом отделении (под пушкой) — кролика. При использовании одного баллона (масса углекислоты — 2,5 кг) при тушении пожара видимых изменений или повреждений токсического характера воздействия у животных обнаружено не было. При тушении пожара с разрядом двух баллонов (масса углекислоты в каждом — 2,5 кг) при открытых люках и дополнительном вводе углекислоты из 15-литрового аварийного баллона для ликвидации пожара (уже при закрытых люках) находившийся на вращающемся полу кролик в течение 2 мин был жив и заметного изменения в координации его движений не наблюдалось. Однако при последовательной (через 35 с) разрядке двух баллонов в боевое отделение (без пожара) животные, размещенные на месте механика-водителя и под пушкой, на полу боевого отделения, через 2 мин после начала истечения СO2 из первого баллона имели признаки отравления углекислотой. Через 1 мин после открытия люков и включения вентиляторов животные приняли сидячее положение, а собака стала искать выход из клетки. Через 3 мин, после извлечения животных из танка, видимых проявлений отравления у них уже не наблюдалось. Максимальная концентрация С02 при этом в зоне дыхания механика-водителя к исходу 80 с составляла 27,4% и 28,6% — в зоне 100 мм от пола боевого отделения, под пушкой.

Окончание обзора отечественных бронированных машин 1945-1965 годов

Учитывая, что животные менее восприимчивы к действию углекислоты, чем человек, зафиксированные в данном случае значения концентрации углекислоты являлись опасными для жизни членов экипажа. Испытания УС ППО с ТЭД с измененными поляризованными реле вместо штатных ТЭЗ показали, что их использование значительно повысило эффективность новой системы пожаротушения.

Среднее время замыкания контактов поляризованного реле было в 32-34 раза меньше времени замыкания контактов ТЭЗ, поэтому УС ППО с ТЭД срабатывало в среднем через 1,25-1,6 с от начала возникновения пожара в танке. Это обстоятельство, в свою очередь, позволило резко ограничить интенсивность пожара, улучшить условия его тушения и уменьшить повреждения внутреннего оборудования. Среднее время размыкания контактов поляризованного реле оказалось в 10 раз меньше времени размыкания контактов ТЭЗ. В результате значительно уменьшилась вероятность ввода в действие очередного баллона ППО, когда пожар был уже потушен.

К преимуществам УС ППО с ТЭД относилась нечувствительность ТЭД к медленным изменениям температуры окружающей среды в любых возможных пределах. Вследствие этого исключалась возможность произвольного замыкания контактов УС ППО в самых разнообразных температурных условиях эксплуатации машин.

В то же время проведенные испытания выявили необходимость поиска дальнейших путей повышения противопожарной защиты танков и сохранения работоспособности экипажа. С этой целью рекомендовалось изготовить изоляцию электропроводов танка из огнестойкого материала. Для снижения возможности возникновения в танке вторичных пожаров следовало заменить легковоспламеняющиеся материалы (дерево, целлулоид и др.) на трудно воспламеняющиеся, пропитать хлопчатобумажные, льняные и пеньковые ткани специальными огнестойкими материалами, а также заменить углекислоту в баллонах ППО веществом, обладавшим менее вредными свойствами для организма человека и не уступавшим по эффективности и транспортабельности углекислоте.

В целом УС ППО с ТЭД рекомендовалась для установки в танках с устранением выявленных недостатков в процессе серийного производства. Эффективность мероприятий по устранению выявленных недостатков рекомендовалось проверить в ходе первых гарантийных испытаниях Т-10, оборудованного УС ППО.

Дальнейшая доработка опытного образца УС ППО, получившего обозначение УАС ППО, осуществлялась ЧТЗ совместно с заводом №255 согласно решениям ГБТУ и Министерства транспортного машиностроения от 15 августа 1956 г. и от 6 февраля 1957 г., а также протоколу технического совещания представителей ГБТУ, НИИБТ полигона, Министерства транспортного машиностроения и танковых заводов в ноябре 1956 г. Усовершенствованный образец новой системы пожаротушения изготовили на заводе №255. Заводские испытания УАС ППО в танке Т-10 (№5409А311) прошли в период с 12 апреля по 2 июня 1958 г. на ЧТЗ.

Представленный образец УАС ППО предназначался для автоматического тушения пожара в обитаемых отделениях и МТО танков и САУ и имел дублирующее устройство ручного пуска. В состав системы входили: автомат системы (АС), термоэлектродатчики (ТЭД), релейная распределительная коробка (КРР), углекислотные баллоны с распределительными головками, обратные клапаны (КО) с поворотными угольниками, трубопроводы с распылителями, коробка управления вентилятором (КУВ) и МОД, обеспечивавший автоматическую остановку двигателя при возникновении пожара в танке.

Автомат системы и распределительная коробка размещались в отделении управления (АС — справа от центрального щитка водителя, а КРР — над баллонами ППО, которые устанавливались справа от водителя на штатных местах). При испытаниях в системе УАС ППО использовались ТЭД, состоявшие из 15 последовательно соединенных термопар (хромель-капель). В боевом отделении танка устанавливались четыре ТЭД и девять распылителей, в МТО — четыре ТЭД и семь распылителей.

Испытания УАС ППО проводились как в стационарных, так и в ходовых условиях. Проверка элементов системы осуществлялась с помощью нагревательного прибора. За время ходовых испытаний танк прошел 1000 км, при этом протяженность пройденного пути за один пробег составляла 44-123 км (меньший километраж при отдельных пробегах был обусловлен параллельным проведением испытаний других опытных узлов танка). Средние скорости движения танка при пробегах составляли 16-30 км/ч. Во время пробегов танка УАС ППО всегда находилась в состоянии готовности к автоматической работе. При этом проверялись влияние тряски и окружающих температур на возможность самопроизвольного срабатывания системы и работоспособность ее аппаратуры.

Контроль предусмотренных программой испытаний параметров при пожарах и после их ликвидации (время замыкания и срабатывания ТЭД и пиропатронов, МОД, отключения и включения вентиляторов, ввода аварийного баллона) осуществлялся по специально изготовленному выносному щиту с сигнальными лампами, смонтированному на переднем правом подкрылке машины. На случай отказа МОД на машине установили дистанционное управление (с помощью троса) педалью подачи топлива. Наблюдение за интенсивностью и распространением пожара в боевом отделении велось через люки, которые закрывались специальными остекленными щитами.

В качестве меры предосторожности в случае отказа системы ППО снаружи танка разместили два 30-литровых баллона с углекислотой, соединенные, соответственно, с трубопроводами боевого отделения и МТО машины. Во избежание образования паров топлива топливные баки танка были полностью заправлены, а в бовукладках уложены специальные макеты выстрелов.

Для создания пожаров в качестве горючего вещества использовали смесь, состоявшую из двух частей дизельного топлива и одной части бензина. При испытаниях УАС ППО провели опыты по тушению пожаров внутри танка. В район создания пожара заливали 30 л горючей смеси, а при последующих пожарах (в этом районе) смесь добавляли по необходимости. Поджиг горючей смеси в танке производился специально изготовленными электрозапалами. При раздельных пожарах (только в боевом отделении или в МТО) горючая смесь удерживалась в отделениях за счет установки танка с креном до 2-3° в соответствующую сторону. При одновременных пожарах в боевом отделении и МТО машина располагалась горизонтально.

Окончание обзора отечественных бронированных машин 1945-1965 годов

Для более интенсивного распространения пожара и создания большой зоны горения поджиг горючей смеси производился в двух точках одновременно. В целях уменьшения испаряемости горючей смеси при подготовке пожаров и избежания сильных взрывов в моменты запала смеси предварительный прогрев танка перед пожарами не производился. Всего за время испытаний УАС ППО произвели 20 пожаров тремя отдельными сериями. Первую серию из шести пожаров провели перед началом ходовых испытаний. В процессе ходовых испытаний в объеме 1000 км пробега, после каждого выезда танка производился осмотр системы, а через 500 км пробега — контрольные проверки ее работы.

По окончании ходовых испытаний провели вторую и третью серии пожаров. При тушении пожаров первой и второй серии в качестве огнегасящего состава применялась углекислота. Для получения сравнительных данных по эффективности огнетушения при тушении пожаров третьей серии использовали огнегасящий состав «3,5» (70% бромэтана и 30% углекислоты).

Пожары второй и третьей серии (каждая из семи пожаров) были организованы по одной методике: шесть пожаров — на стоянке танка и один пожар — на ходу танка в МТО. На ходовых испытаниях случаев самопроизвольного срабатывания и поломки аппаратуры УАС ППО не наблюдалось. Автоматы системы действовали безотказно и обеспечили ее включение в обоих отделениях танка при возникновении пожара, отключение двигателя при тушении пожара, отключение вентиляторов при срабатывании системы и включение их после ликвидации пожара, а также введение в действие очередного баллона при неисправности предыдущего баллона. Автоматическая аппаратура выдержала 300 срабатываний без каких-либо повреждений и была пригодна к дальнейшей эксплуатации. ТЭД продемонстрировали высокую чувствительность к воздействию пламени. При контрольных проверках время срабатывания находилось в пределах от 1 до 3,5 с с момента поднесения нагревательного прибора. При опытах на тушение пожаров срабатывание ТЭД происходило по истечении 1 -19 с с момента образования пожара, что зависело от зоны горения и интенсивности распространения пожара. Задержка выхода углекислоты при пожарах в МТО — 3,3-7 с после срабатывания ТЭД, включение вентиляторов — по истечении 33-59 с после срабатывания пиропатрона.

При использовании огнегасящего состава «3,5» даже в меньшем количестве, чем углекислоты, пожары ликвидировались более эффективно. Так, для тушения одновременных пожаров в двух отделениях потребовалось два углекислотных баллона с массой заряда 2,5-2,7 кг каждый, а при использовании состава «3,5» пожар был потушен одним баллоном с массой заряда 1,58 кг. По результатам проведенных испытаний заводская комиссия рекомендовала систему УАС ППО для установки в тяжелых танках. При этом в целях дальнейшего усовершенствования системы УАС ППО предлагалось произвести отработку мест расположения ТЭД (увеличить их количество для сокращения времени протекания пожара в небольших изолированных объемах танка — в нишах, карманах, колодцах и т.д.) с последующей проверкой на тушение пожаров в танке Т-10М («Объект 272»).

С целью снижения заметности танка Т-10 на поле боя в конструкторских бюро ЛКЗ и ЧТЗ на основании плана НИОКР, утвержденного Министерством обороны СССР на 1957 г. и согласованного с Министерством транспортного машиностроения, начались работы по созданию и установке в машине системы ТДА.

В соответствии с договором, заключенным между ЧТЗ и НТК ГБТУ №Н4-147, заводу надлежало до 1 июня 1957 г. представить технический проект установки ТДА в танке Т-10. С небольшим опозданием (11 июня) такой проект был представлен на рассмотрение в НТК ГБТУ.

В своем проекте завод предлагал устанавливать форсунки ТДА в нижней части выпускных патрубков двигателя. Такое техническое решение исключало возможность производства быстрого демонтажа распылителей для их чистки или замены без необходимости демонтажа узлов машины. По мнению НТК ГБТУ, расположение форсунок в выпускных патрубках двигателя должно было не только обеспечить равномерное распределение конуса распыла по всему их сечению, но и быть доступным для их быстрого демонтажа. Кроме того, для подачи дизельного топлива к форсункам в техпроекте использовали штатный насосный агрегат МЗН-2. Однако, как показали испытания аппаратуры ТДА на среднем танке Т-54, данный насосный агрегат не обеспечивал ее надежной работы при расходе топлива через форсунки более 6 л/мин из-за перегрузки электродвигателя. Поэтому на заводе №75 для ТДА танка Т-54 заменили штатный электродвигатель насоса МЗН-2 на электромотор МПБ-56 конструкции Московского тормозного завода. Длительные стендовые испытания насоса МЗН с электродвигателем МПБ-56, а также его испытания в системе ТДА на Т-54 принесли положительные результаты.

Учитывая, что расходы дизельного топлива через форсунки системы ТДА на Т-54 соответствовали заданным по ТТТ расходам для танка Т-10, ЧТЗ предлагалось ориентироваться на насосный агрегат завода №75 (с электродвигателем МПБ-56). Для пуска насосного агрегата ТДА на заводе заимствовали включатель В-45 с подобной аппаратуры для танка ПТ-76, но не учли величину рабочего тока, который потреблялся электродвигателем проектируемой установки. В итоге ЧКЗ предложили ориентироваться на электросхему установки ТДА для Т-54.

После обсуждения технический проект, представленный ЧТЗ, рекомендовали (с учетом устранения недостатков) для подготовки рабочего проекта и изготовления опытного образца. В мае 1958 г. в СКБ-2 ЧТЗ собрали и установили в Т-10 (№311) опытный образец аппаратуры ТДА с тремя вариантами форсунок. Однако результаты заводских ходовых испытаний показали, что они не смогли обеспечить надежность аппаратуры (после 10-15 ч работы двигателя отверстия в форсунках закоксовывались и система становилась неработоспособной). Для устранения этого недостатка руководство 12 Управления ГКСМОТ СССР рекомендовало доработать конструкцию форсунок и провести повторные испытания в танке. Для экономии времени предлагалось воспользоваться опытом завода №183 и СТЗ в создании аналогичной аппаратуры для танков Т-54 и ПТ-76.

Повторные испытания аппаратуры ТДА конструкции ЧТЗ в танке Т-10А прошли на НИИБТ полигоне в конце ноября 1958 г. Однако вновь выявились серьезные недостатки. По рекомендациям НИИБТ полигона и замечаниям НТК ГБТУ на заводе доработали аппаратуру, при этом для монтажа в Т-10А конструктивным изменениям подверглись все основные элементы ТДА.

После заводских испытаний этот Т-10А был представлен на контрольные полигонные испытания, которые состоялись на полигоне ЧТЗ в период с 6 по 16 января 1960 г. На этот раз аппаратура обеспечила постановку дымовых завес при движении машины на всех передачах и при работе двигателя на эксплуатационных режимах. Стойкость дымовой завесы в различных метеорологических условиях составляла от 30 до 80 с. В результате усовершенствованный образец ТДА был рекомендован к установке в серийных и вновь разрабатываемых новых тяжелых танках.

Большое значение уделялось повышению подвижности танка Т-10. Работы велись в направлении создания ГМТ, более простой в управлении и производстве механической трансмиссии, внедрения гидравлических приводов управления, установки более мощного двигателя с обеспечением многотопливности, совершенствования ходовой части, повышения долговечности и надежности работы гусениц, внедрения гирополукомпа-са для вождения машины как в условиях затрудненного ориентирования, так и при подводном вождении (с предоставлением этой возможности), увеличения запаса хода и улучшения условий работы механика-водителя.

Использование в трансмиссиях танков ИС-4 и Т-10 ПКП значительно облегчило управление ими, повысило средние скорости движения, но не обеспечило достаточной надежности и долговечности трансмиссий в целом. Частые поломки валов, барабанов и шестерен, ненадежная работа фрикционных элементов ПКП были вызваны большими динамическими перегрузками, которые возрастали с увеличением мощности двигателя, массы машин и скоростей движения. Как показали результаты испытаний американских танков на НИИБТ полигоне, многие из этих проблем можно было решить за счет использования ГМТ в отечественных тяжелых машинах вместо существующих механических трансмиссий. Создание автоматической трансмиссии с непрерывным регулированием передаточного отношения и ее установка в танке должны были обеспечить ему повышение приемистости и средней скорости движения, упростить и облегчить управление, снизить динамические нагрузки, действовавшие на элементы трансмиссии и двигатель (с устранением возможности его остановки (заглохания), а также увеличить эксплуатационную надежность трансмиссии и исключить регулировку фрикционных элементов. Кроме того, меньшие габариты ГМТ обеспечивали более свободную компоновку МТО тяжелого танка.

В разработке основ теории гидродинамических передач и вопросов их применения в отечественной технике участвовали видные советские ученые и инженеры, такие как профессоры А. Н. Вознесенский, А. И. Вощинин, А. Н. Кудрявцев, В. Н. Прокофьев, А. С. Антонов, инженеры: А. Е. Бинович, А. П. Крюков, Н. К. Куликов, А. Я. Кочкарев, А. В. Петров, В. И. Лапидус, А. Г. Козлов, А. А. Силаев, А. Д. Крюков, А. И. Благонравов, В. Д. Аксененко, А. К. Байдин, И. С. Новохатько и другие. Работы по ГМТ для танка «Объект 730» (Т-10) велись во ВНИИ-100 в соответствии с постановлением Совета Министров СССР № 2486-983 от 10 июня 1950 г. По договору с НТК ГБТУ институт должен был представить технический проект трансмиссии 30 декабря 1950 г. и изготовить два ее опытных образца в IV квартале 1951 г.

Разработка ГМТ осуществлялась ВНИИ-100 совместно с ЦНИИТМАШ (гидротрансформатор) и ВИАМ (металлокерамические диски). Активное участие в исследовании различных схем и конструкций гидротрансформаторов и ГМТ приняли ученые Военной академии БТВ им. И. В. Сталина и Военной академии тыла и транспорта, ЛПИ им. М. И. Калинина, конструкторы и инженеры ЛКЗ и ЧКЗ.

Окончание обзора отечественных бронированных машин 1945-1965 годов

К концу 1950 г., входе реализации технического проекта (руководитель — к.т.н. А. П. Крюков) во ВНИИ-100, используя опыт ЦНИИТМАШ, выполнили большой объем расчетно-конструкторских работ. Было предложено несколько вариантов ГМТ, два из которых представили на рассмотрение научно-технического совета института. Совет принял решение доработать один из вариантов ГМТ с учетом сделанных замечаний. В 1951 г. одновременно с доработкой выбранного варианта ГМТ («Объект 266») провели подготовку к стендовым испытаниям ее элементов и узлов. В течение года выполнили и передали в производство чертежи стендового оборудования, предназначенного для проведения испытаний гидротрансформатора и планетарного ряда ГМТ. Параллельно велось изготовление стендов для испытаний металлокерамических дисков и трансмиссии в целом. Однако уложиться в установленный срок институт не успел.

Отставание по срокам объяснялось, с одной стороны, задержкой в получении гидротрансформатора и его чертежей от ЦНИИТМАШ, а с другой стороны — сложностью и новизной решаемых вопросов при разработке ГМТ и отсутствием необходимого опыта у ВНИИ-100.

В соответствии с распоряжением Совета Министров СССР №428брс от 29 февраля 1952 г. для ВНИИ-100 установили новый срок изготовления двух опытных образцов ГМТ — 1 июля 1952 г. За это время ВНИИ-100 впервые в отечественном танкостроении выполнил достаточно большой объем НИР по металлокерамическим дискам трения, испытанию гидротрансформатора в параллельном потоке, а также подбору масла для ГМТ и отработке ее отдельных элементов (сервосистеме, масляным насосам, кольцевым уплотнениям и т.д.). В результате были собраны и обкатаны на технологическом стенде два опытных образца ГМТ («Объект 266»), которые 7 июня 1952 г. предъявили комиссии ГБТУ. Они были приняты без каких-либо замечаний.

По результатам стендовых и ходовых испытаний, в соответствии с распоряжением Совета Министров ССР №2021брс от 8 августа 1952
г., в институте должны были доработать ГМТ и в I квартале 1954 г. представить один образец на государственные испытания. До 1 января
г.,

г. произвели холостую обкатку и обкатку трансмиссии под нагрузкой на стенде и определили максимальный к.п.д. трансмиссии на второй передаче (0,8-0,81). Однако из-за больших утечек в гидросистеме трансмиссии испытания под нагрузкой не завершили (всего трансмиссия проработала без нагрузки и под нагрузкой около 40 ч). Кроме того, согласно приказу министра транспортного машиностроения №541 от 25 августа 1952 г., во ВНИИ-100 приступили к изготовлению литого гидротрансформатора. Данная работа проводилась совместно с Л КЗ и заводом N2800: первый занимался технологией и оснасткой, а второй — отливкой рабочих колес. Но из-за позднего (более чем на два месяца) начала работы задание министра к 1 января 1953 г. выполнено не было. Одновременно под монтаж и проведение испытаний опытных образцов ГМТ институт обязывался восстановить три танка «Объект 730». Но в 1952 г. завершили только все подготовительные работы для восстановления первой машины и внесли в нее изменения для монтажа ГМТ, поскольку ЛКЗ до января 1953 г. так и не поставил институту необходимые узлы и детали.

В течение следующего года во ВНИИ-100 провели стендовые испытания первого образца ГМТ с параллельной доводкой отдельных элементов. В результате удалось выявить и устранить ряд дефектов, произвести конструктивную доработку ГМТ и разработать новую гидравлическую сервосистему (для третьего и четвертого образцов).

На одном из восстановленных танков «Объект 730» смонтировали второй образец ГМТ с системой охлаждения и провели предварительные ходовые испытания в объеме 1150 км (в полном объеме — 1270 км, которые завершили в январе 1954 г.). В процессе ходовых испытаний вновь пришлось заниматься доводкой конструкции и устранять выявившиеся дефекты ГМТ и системы охлаждения, поэтому установленные сроки не были выдержаны. Тем не менее, испытания подтвердили ряд существенных преимуществ ГМТ по сравнению с ПКП.

По результатам стендовых и (частично) предварительных ходовых испытаний переделали чертежи для выпуска третьего и четвертого образцов ГМТ, изготовили третий образец ГМТ267 и систему охлаждения, восстановили второй танк «Объект 730», в котором смонтировали третий образец ГМТ с системой охлаждения и приступили к испытаниям на гарантийный километраж. Затем во ВНИИ-100 приступили к сборке четвертого образца ГМТ со сроком завершения 1 марта 1954 г. К 30 декабря 1953 г. в институте изготовили литой гидротрансформатор и в январе 1954 г. провели его стендовые испытания, которые показали хорошие результаты по к.п.д. В том же году в институте выполнили эскизную компоновку гидрофрикционной трансмиссии для тяжелого танка. В январе 1954 г. для нее по чертежам НИИ-3 изготовили фрикционный трансформатор. Однако дальнейшие работы в этом направлении в августе были значительно сокращены, а затем и вовсе прекращены.

С 4 января по 2 апреля 1954 г. во ВНИИ-100 провели в объеме 1400 км пробега заводские испытания третьего образца ГМТ с клепанным гидротрансформатором. Они вновь показали, что тяжелый танк с ГМТ по сравнению с танком, имевшим восьмискоростную ПКП, обладал более высокими динамическими качествами и лучшей управляемостью. Основным недостатком ГМТ являлся повышенный километровый расход топлива. Это было следствием применения в трансмиссии гидротрансформатора, не имевшего перехода на режим гидромуфты, поэтому трансмиссия при движении танка по легким дорогам со сравнительно невысокой загрузкой двигателя и достаточно высоких частотах вращения коленчатого вала имела низкий к.п.д.

Для устранения данного недостатка трансмиссии сделали ставку на использование литого комплексного гидротрансформатора (ГТК), имевшего возможность перехода на режим работы гидро­муфты. Согласно решению заместителя председателя Совета Министров СССР Н. А. Булганина, во ВНИИ-100 изготовили образцы литого ГТК и провели его всесторонние стендовые испытания. Они показали, что литой ГТК имел средний к.п.д. выше, чем клепаный гидротрансформатор. Одновременно осуществили переделку третьего образца ГМТ под установку литого ГТК, восстановили танк Т-10 для заводских испытаний третьего образца ГМТ с литым ГТК и провели их. За время заводских ходовых испытаний Т-10 с ГМТ прошел 1746 км. Всего трансмиссия отработала около 161 ч, из них под нагрузкой более 108,5 ч. Эти испытания вновь подтвердили преимущества литого ГТК перед клепанным по динамическим качествам машины и легкости управления ею. Километровые расходы топлива при этом также существенно снизились.

Тем не менее, на заводских испытаниях вновь наблюдались недостатки некоторых узлов ГМТ и ее системы охлаждения. Их устранили в конструкции четвертого образца ГМТ, предназначавшегося для государственных испытаний.

Окончание обзора отечественных бронированных машин 1945-1965 годов

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *